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Abstract
We investigate the time evolution of the decay (or ionization) probability of a
D-dimensional model atom (D = 1, 2, 3) in the presence of a uniform (i.e.,
static and homogeneous) background field. The model atom consists in a non-
relativistic point particle in the presence of a point-like attractive well. It is
shown that the model exhibits infinitely many resonances leading to possible
deviations from the naive exponential decay law of the non-decay (or survival)
probability of the initial atomic quantum state. Almost stable states exist due
to the presence of the attractive interaction, no matter how weak it is. Analytic
estimates as well as numerical evaluation of the decay rates are explicitly given
and discussed.

PACS numbers: 31.70.Hq, 32.60.+i, 03.65.−w

1. Introduction

Exponential decay is a common feature of many physical processes; in particular, it is the
universal hallmark of unstable systems such as radioactive nuclei. However, it is known that
under very general conditions quantum mechanics predicts deviations from the exponential
decay within short as well as long time intervals [1]. As pointed out by Khalfin [2], the
latter situation occurs whenever the spectrum of the Hamiltonian H is bounded from below;
in this case, the Paley–Wiener theorem [3] on Fourier transforms implies that the non-decay
or survival amplitude A(t; [ψ]) := 〈ψ(0)|ψ(t)〉 necessarily satisfies∫ +∞

−∞

| ln |A(t; [ψ])‖
1 + t2

dt < ∞. (1)
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This condition clearly rules out an exponential decay for t → ∞, as this would cause the
integral above to diverge3. Explicit calculations in a number of models [4] show that, in fact,
there occurs a crossover from exponential to power law decay when t → ∞.

One may wonder what happens if the Hamiltonian is not bounded from below. At first
glance this might appear to be an academic question, since any realistic Hamiltonian should
be bounded from below. However, such ‘unrealistic’ Hamiltonians are often found in physics.
Some examples are the decay of a metastable vacuum through the formation of bubbles of the
true vacuum [5], the droplet model for first-order phase transitions in statistical physics [6], or
the ionization of an atom by a static electric field [7]. In the latter case Herbst [8] provided a
partial answer to that question. Let H = −� + V + Fx be the Hamiltonian describing a one-
electron atom in a uniform electric field. If V (x, y, z) is holomorphic in x and V (x + ia, y, z)

is bounded and decreases to zero as r := (x2 + y2 + z2)1/2 → ∞ for each a ∈ R, whereas ψ

is an eigenvector of −� + V with negative eigenvalue, then (for F �= 0)

〈ψ | exp(−iHt)|ψ〉 =
∑
�j �α

Cj exp(−iEj t) + O(exp(−(α + ε)t/2)) (2)

where Ej are the resonances of H (i.e., the complex poles of (E−H)−1 in the lower half-plane)
whereas �j := −2 Im Ej are their widths and α and ε are suitable positive numbers. Herbst
also showed that inf{�j } > 0, in such a way that equation (2) ensures the exponential decay
of A(t;ψ) as t → ∞.

The purpose of the present paper is to investigate the decay law in a very simple
(albeit non-trivial) model, namely a one-electron atom in which the Coulomb attractive
potential is replaced by a point-like attractive well—an idealization of a very short-range
attractive interaction—and put under the influence of a static and uniform electric or
gravitational field (for related simple models, see [9, 10]). The model will be studied in
D = 1, 2, 3 space dimensions and will be shown to be exactly solvable in the one- and
three-dimensional cases, whereas in the two-dimensional case it is solvable up to a quadrature.
In spite of its simplicity, this model unravels some remarkable features that can actually be
evaluated in detail and become worthwhile to be used as a paradigm with respect to more
realistic situations, without any substantial change in the basic physical contents. With this
concern, it is known that, in the absence of a uniform field, this model exhibits a bound state
(see for instance [11–13]).

It turns out that, once a background uniform field has been switched on, an infinite
number of resonances arise in this model. In particular, the state vector that corresponds to
the bound state in the absence of a uniform field is turned into a bona fide quasi-stable state
for a sufficiently weak external field. For instance, if the bound state energy is of the order
of 1 eV, the lifetime of the corresponding quasi-stable state in the presence of the Earth’s
gravitational field is much longer than the present age of the Universe; even in the presence of
a rather strong laboratory static electric field, its lifetime is long in comparison to the typical
time scales of atomic and condensed matter physics. On the other hand, very strong external
fields are expected to create non-perturbative deviations from the naive exponential decay law.
This has been observed in previous numerical studies of the present model [14–16] and will
be qualitatively explained in this work.

The paper is organized as follows. In section 2 we first analyse the one-dimensional case,
where a direct one-to-one correspondence takes place between the strength of the attractive
potential well and the bound state energy. All the main features of the model are explicitly
3 Another measure of decay, used for states initially confined inside a region M (i.e., ψ(x, t = 0) vanishes outside
M), is the non-escape probability, defined as P(t) := ∫

M |ψ(x, t)|2 dx. Using Schwarz’s inequality one can easily
show that P(t) � |A(t)|2, so that Khalfin’s argument also rules out the exponential decay of P(t) for t → ∞.
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exhibited and discussed. In section 3 we generalize our investigation to the two- and three-
dimensional cases. Here the renormalization procedure is mandatory, in order to remove the
ultraviolet divergences of the Green functions. In so doing, the bound state energy in the
zero-field case achieves a deeper physical meaning—it specifies the self-adjoint extension of
the quantum Hamiltonian operator—whereas the renormalized coupling parameters become
running auxiliary quantities. Mutatis mutandis, all the main physical properties of the one-
dimensional case are essentially recovered. In section 4 we draw our conclusions, whilst we
defer some technical although important details to the appendixes.

2. The one-dimensional model

Let us consider the Hamiltonian4

H = − d2

dx2
− λδ(x) − Fx λ > 0 F > 0 (3)

describing a particle interacting with an attractive δ-potential and a uniform background field.
In the absence of the field (i.e., when F = 0) there is a single bound state with energy EB =
−λ2/4, the corresponding wavefunction being given by ψB(x) = (λ/2)1/2 exp(−λ|x|/2).
Once the uniform field is turned on, this bound state becomes unstable, in the sense that
A(t; [ψB]) → 0 as t → ∞. The precise way in which this occurs will be the subject of this
section.

2.1. Retarded Green function

The retarded Green function G+(E; x, x ′) is the solution to the differential equation

(E − H)G+(E; x, x ′) = δ(x − x ′) E ∈ C (4)

that satisfies the boundary condition

lim
|x|→∞

G+(E; x, x ′) = 0 for Im(E) > 0; (5)

it is defined for Im(E) � 0 by analytic continuation. The solution to equation (4) is known
[12, 16, 17], but we shall derive it here for the sake of completeness.

To solve equation (4), let us first consider the case λ = 0; it can then be rewritten as(
d2

dρ2
+ ρ

)
G+

0(ρ, ρ ′) = F−1/3δ(ρ − ρ ′) (6)

where

ρ := F 1/3

(
x +

E

F

)
. (7)

The solution to equation (6) that satisfies the boundary condition (5) is given by

G+
0(ρ, ρ ′) = aAi(−ρ)θ(ρ ′ − ρ) + b Ci(+)(−ρ)θ(ρ − ρ ′) (8)

where Ai(x) and Ci(+)(x) := Bi(x) + iAi(x) are Airy functions [18] and θ(x) is the Heaviside
step function. The coefficients a and b are fixed by the matching conditions at ρ = ρ ′:

G+
0(ρ

′ + 0, ρ ′) = G+
0(ρ

′ − 0, ρ ′) (9)

∂ρG
+
0(ρ, ρ ′)|ρ=ρ ′+0 − ∂ρG

+
0(ρ, ρ ′)|ρ=ρ ′−0 = F−1/3. (10)

4 We use atomic units such that h̄ = 2m = 1.
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Solving these equations one finally arrives at

G+
0(ρ, ρ ′) = −πF−1/3Ai(−ρ−) Ci(+)(−ρ+) (11)

where 2ρ± := ρ + ρ ′ ± |ρ − ρ ′|.
In order to obtain G+(E; x, x ′) for λ �= 0, we rewrite equation (4) as an integral equation

G+(E; x, x ′) = G+
0(E; x, x ′) −

∫ +∞

−∞
dy G+

0(E; x, y)λδ(y)G+(E; y, x ′)

= G+
0(E; x, x ′) − λG+

0(E; x, 0)G+(E; 0, x ′). (12)

Taking x = 0, solving for G+(E; 0, x ′), and reinserting the result into equation (12) yields the
so-called Krein formula [11]:

G+(E; x, x ′) = G+
0(E; x, x ′) − G+

0(E; x, 0)G+
0(E; 0, x ′)

g(λ,E)
(13)

where

g(λ,E) := 1

λ
+ G+

0(E; 0, 0). (14)

2.2. Resonant-mode expansion of the propagator

From G+(E; x, x ′) one can obtain the retarded propagator K+(t; x, x ′) by a Fourier
transformation:

K+(t; x, x ′) = i
∫ +∞

−∞

dE

2π
e−iEtG+(E; x, x ′). (15)

It turns out that the following bound on G+(E; x, x ′) holds true in the lower half-plane5 for
|E| sufficiently large (see appendix A):

|G+(E; x, x ′)| � C|E|−1/2 exp{|E|1/2(|x| + |x ′|)} |E| → ∞ (16)

where C is a suitable constant.
This bound allows one to close the contour of integration of (15) when t > 0 with a

semi-circle of infinite radius in the lower half-plane without changing the value of the integral.
Using Cauchy’s theorem, one then obtains the so-called resonant-mode expansion of the
propagator [19, 20]:

K+(t; x, x ′) =
∑

n

exp(−iEnt)ϕn(x)ϕn(x
′) (17)

where the sum runs over the poles6 of G+(E; x, x ′) located in the lower half-plane and the
functions ϕn(x) are given by

ϕn(x) = G+
0(E; x, 0)[−∂EG+

0(E; 0, 0)
]1/2

∣∣∣∣∣
E=En

. (18)

The functions ϕn(x) can be recognized as the so-called Gamow states [19, 21]. On the
one hand, just like the bona fide energy eigenfunctions, they satisfy the differential equation
5 More precisely, the bound is valid only outside the sectors |arg(E) + 2π/3| < δ and −δ < arg(E) < 0, with
δ > 0 depending on |E|. As shown in section 2.3 and appendix D, these regions contain poles of G+(E; x, x′) with
arbitrarily large absolute values, where the inequality (16) is obviously false. One can, however, make δ arbitrarily
small by taking |E| sufficiently large.
6 In writing (17) and (18) we have made use of the fact that the poles of G+(E; x, x′) are simple, as can be explicitly
checked by direct inspection.
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Hϕn(x) = Enϕn(x). On the other hand, the complex quantities En do not correspond to
the eigenvalues of the self-adjoint Hamiltonian operator and, moreover, the Gamow states are
neither normalizable (not even in the sense of generalized functions, because they diverge
when x → ∞) nor mutually orthogonal.

Using equation (17) and the fact that

ψ(x, t) =
∫ +∞

−∞
dx ′K+(t; x, x ′)ψ(x ′, 0) t � 0 (19)

we can recast the non-decay amplitude A(t; [ψ]) := 〈ψ |e−iHt |ψ〉 in the form of a resonant-
mode expansion:

A(t; [ψ]) =
∑

n

C̃nCn exp(−iEnt) (20)

where

Cn :=
∫ +∞

−∞
dxψ(x, 0)ϕn(x) C̃n :=

∫ +∞

−∞
dxψ∗(x, 0)ϕn(x). (21)

Note that C̃n �= C∗
n and |ϕn(x)|2 ∼ exp(F−1/2�nx

1/2) as x → ∞. It follows therefrom that
the wavefunction ψ(x, 0) of the initial state must decrease sufficiently fast at infinity in order
that the coefficients Cn, C̃n exist. This condition is fulfilled by ψ(x, 0) = ψB(x). This still
leaves open the question of whether the series (20) converges. Here we shall assume that it
does, at least in the l2-topology.

2.3. Poles of the Green function

The unperturbed Green function G+
0(E; x, x ′) is an holomorphic function of E, so that the

poles of G+(E; x, x ′) are all given by the zeros of g(λ,E). Inserting the explicit form of
G+

0(E; 0, 0) into equation (14) and noting that when F = 0 there is a bound state with energy
EB = −λ2/4, we arrive at the following equation:

Ai(−ε) Ci(+)(−ε) = 1

2π
(−εB)−1/2 εB := EBF−2/3. (22)

For a given value of εB , equation (22) has an infinite number of solutions, all located in the
lower half-plane. Some of them are shown in figure 1. They can be numbered according to
their values in the limit εB → −∞, which corresponds to a very weak field (F → 0) or a
very strong attractive interaction (λ → ∞). One of the poles approaches the negative real
axis and behaves asymptotically as (see appendix B)

ε0 ∼ εB

{
1 + i exp

[− 4
3 (−εB)3/2

]}
εB → −∞. (23)

Its real part corresponds to the energy of the (unique) bound state of the atom in the absence
of a uniform field. Its imaginary part is half the decay rate of the atom via tunnelling through
the potential barrier created by the external field.

The other poles approach the zeros7 of Ai(−ε), which are real and located on the positive
real axis,

lim
εB→−∞ εn = −an n ∈ N (24)

and of Ci(+)(−ε),

lim
εB→−∞ ε−n = −an e−2iπ/3 n ∈ N. (25)

7 Note that the rhs of equation (22) vanishes in the limit εB → −∞.
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Figure 1. Poles of the Green function in the complex ε-plane (ε−3 to ε9, clockwise) in the one-
dimensional case: εB = −10 (◦), εB = −1 (�), εB = −0.1 (�) and εB = −0.01 (+). The dashed
line corresponds to the half-line arg(ε) = −2π/3. (Angles appear distorted in this plot because
the real and imaginary axes have different scales.)

In equation (24), an denotes the nth zero of Ai(z); equation (25) follows from the identity
Ci(+)(z) = 2 eiπ/6Ai(z e2iπ/3) [18].

If the external field is very weak, but nonvanishing—i.e., |εB |  1—then the poles
εn with n > 0 exhibit a small negative imaginary part (see figure 1). However, while
Im(ε0) approaches zero exponentially fast as εB → −∞, one has Im(εn) ∼ (−εB)−1 in the
same limit (provided n is not very large, see appendix C). This means that the transient
effects associated with the poles εn with n > 0—and a fortiori those associated with
εn with n < 0—disappear much faster than the corresponding effects associated with the
resonance ε0.

Looking at figure 1, one can note that the imaginary parts of the first few poles εn with
n > 0 have the same order of magnitude. This explains the short time oscillatory behaviour of
|A(t; [ψ])|2 observed in numerical studies [14–16] of the model (3) in the weak field regime:
it is a consequence of the interference among the resonances associated with those poles. As a
matter of fact, these resonances have a simple physical interpretation: when the external field
F is turned on, it may excite the particle to a state of positive energy. Once excited, the particle
is pushed to the positive x-direction by the field—recall that we are assuming F > 0—but it is
scattered by the potential V (x) = −λδ(x). Because the potential is strongly attractive as λ is
very large, the transmission probability is small, so that the particle can bounce back and forth
many times in the region to the left of the origin before it finally ‘jumps over’ the potential
well.
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Let us now examine the strong field regime |εB | � 1. In this case, as shown in figure 1,
the decay rates {�j |j ∈ Z} form a monotonic decreasing sequence, with limj→∞ �j = 0,
as shown in appendix D. Thus, in contrast with the class of potentials considered by
Herbst [8], there does not exist a slower decaying resonance, which would eventually
dominate the decay process. As a consequence, the decay is not asymptotically exponential:
∀α > 0, limt→∞ eαt |A(t; [ψ])|2 = ∞. By the way, strictly speaking this result actually holds
true even in the weak field regime |εB |  1, because limn→∞ �n = 0 regardless of the value
of εB (see appendix D). In the weak field case, however, one should have to wait an extremely
long time until a deviation from the exponential decay |A(t; [ψ])|2 ∼ exp(−�0t) became
appreciable. Besides, |A(t; [ψ])|2 would be so small by then that such a deviation would be
practically unobservable.

The crossover from the weak to the strong field regime occurs at εB ∼ −1. At this value,
Im(ε0) ≈ Im(ε1) (see figure 1)—an indication that the two mechanisms of decay discussed
above become equally important.

3. The two- and three-dimensional cases

3.1. Retarded Green function

We can use the same strategy employed in section 2.1 to solve the D-dimensional version of
equation (4), which reads

[E + ∇2 + λδ(D)(x) + Fx]G+(E; x, x′) = δ(D)(x − x′) (26)

where x = (x1, . . . , xD) := (x, r) and E ∈ C. Thus we can formally write G+(E; x, x′) as in
equation (13), in which G+

0(E; x, x′) denotes the solution to equation (26) in the case λ = 0.
The latter can be written as

G+
0(E; x, x′) =

∫
dD−1k

(2π)D−1
eik·(r−r′)G+

0 (E, k; x, x ′) (27)

where G+
0 (E, k; x, x ′) satisfies(

E − k2 +
∂2

∂x2
+ Fx

)
G+

0 (E, k; x, x ′) = δ(x − x ′). (28)

This has precisely the form of equation (4) with λ = 0 and E → E −k2, the solution to which
is given by equation (11). Inserting it into equation (27) we finally obtain

G+
0(E; x, x′) = −πF−1/3

∫
dD−1k

(2π)D−1
exp(ik · (r − r′))Ai(−ρ−) Ci(+)(−ρ+) (29)

where now ρ := F 1/3[x + (E − k2)/F ] and 2ρ± := ρ + ρ ′ ± |ρ − ρ ′|.

3.2. Renormalization

In contrast with the one-dimensional case, the Green function is ill-defined at coincident points
for D � 2. Indeed, after setting x = x′ = 0 in equation (29) and performing the angular
integration, we obtain

G+
0(E; 0, 0) = −CDF−1/3

∫ ∞

0
Ai(q) Ci(+)(q)kD−2 dk (30)

where

CD := 22−Dπ(3−D)/2

�[(D − 1)/2]
q := F−2/3(k2 − E). (31)
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Since

Ai(q) Ci(+)(q) ∼ q−1/2

2π
∼ F 1/3

2πk
for k → ∞ (32)

the integral in equation (30) turns out to be ultraviolet divergent in D � 2. In the two- and
three-dimensional cases the divergence can be absorbed through a redefinition of the coupling
parameter λ. To do this we follow the same procedure employed in [22]. Let us introduce a
cutoff  in the upper limit of integration in equation (30) and add to the resulting expression
the following integral:

ID(,µ) := CD

2π

∫ 

0

kD−2 dk√
k2 + µ2

(33)

which contains the arbitrary momentum scale µ > 0. At the same time, we subtract ID(,µ)

from λ−1 and define the renormalized coupling parameter λR as

[λR(µ)]−1 := lim
→∞

[λ−1 − ID(,µ)] (34)

where it is understood that λ depends on  in such a way that the limit exists. In this way,
the denominator of the Krein formula (13) is replaced by an expression that is finite when the
cutoff is removed:

lim
→∞

gD(λ,E) = 1

λR

− CD

F 1/3

∫ ∞

0

[
Ai(q) Ci(+)(q) − F 1/3

2π
√

k2 + µ2

]
kD−2 dk

:= gD(λR, µ,E). (35)

In the next two subsections we shall analyse this expression separately in D = 2 and
D = 3 dimensions. It turns out that the latter is simpler than the former, so we discuss it
first.

3.3. Three-dimensional case

In D = 3 the integral in equation (35) can be computed in closed form8 yielding (ε := EF−2/3)

g3(λR, µ,E) = 1

λR

− µ

4π
− 1

4
F 1/3[εAi(−ε) Ci(+)(−ε) + Ai′(−ε) Ci(+)′(−ε)]. (36)

Using the asymptotic expressions of the Airy functions for large argument [18], one can easily
show that in the limit F → 0 the expression above is reduced to

g3(λR, µ,E)|F=0 = 1

λR

− µ

4π
+

√−E

4π
. (37)

Thus, provided λR > 4π/µ, the quantity g3(λR, µ,E) has a real zero given by

EB = −
[
µ − 4π

λR(µ)

]2

(38)

which can be identified as the energy of the unique bound state of the system. It is worthwhile
to remark that the bound state energy is a physical quantity and turns out to be independent of
the arbitrary scale µ. From this physical requirement one can readily obtain the flow equation

8
∫

y1y2 dx = xy1y2 − y′
1y

′
2 for any two solutions of the Airy equation y′′ − xy = 0.
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Figure 2. Poles of the Green function in the complex ε-plane (ε0 to ε10, from left to right) in the
three-dimensional case: εB = −10 (◦), εB = −1 (�) and εB = −0.1 (�).

for the renormalized running coupling parameter:

λR(µ) = λR(µ0)

1 + (µ − µ0)[λR(µ0)/4π ]
(39)

which exhibits asymptotic freedom, i.e., λR(µ) → 0 as µ → ∞.
After setting εB := F−2/3EB we can rewrite the resonance equation g3(λR, µ,E) = 0 in

the form
1

π
(−εB)1/2 + εAi(−ε) Ci(+)(−ε) + Ai′(−ε) Ci(+)′(−ε) = 0 (40)

that generalizes equation (22) to the three-dimensional case. As in the one-dimensional case,
equation (40) has a solution ε0 that tends asymptotically to εB in the weak field regime (see
appendix B):

ε0 ∼ εB

{
1 +

i

4
(−εB)−3/2 exp

[
−4

3
(−εB)3/2

]}
εB → −∞. (41)

It has the same physical interpretation as its one-dimensional counterpart (see equation (23)).
In addition to ε0, equation (40) has an infinite number of solutions. Some of them are

shown in figure 2 for three different values of εB . Their distribution in the complex ε-plane
bears some resemblance to the one-dimensional case (see figure 1); in particular, they approach
asymptotically the half-lines arg(ε) = −2π/3 and arg(ε) = 0 (see appendix D). There are,
however, two important differences:

(i) for fixed n > 0 we have that9 limεB→−∞ Im(εn) �= 0, as shown in figure 2, which clearly
exhibits that the larger |εB | is the farther εn is from the real axis;

9 Note that this fact is not in conflict with equation (D.6), which is valid under the condition that |εn|  |εB |.
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(ii) there is no clear distinction between the weak and strong field regimes—�0 is always
smaller than �1, even for εB → 0.

The first difference has a simple geometric interpretation: in three dimensions a particle
can avoid a localized obstacle by going around it. Hence, the field F can easily detach a
particle with positive energy from a localized potential.

3.4. Two-dimensional case

Let us now finally discuss the two-dimensional case. Concerning this, it is important to realize
that the integral of equation (35) is no longer expressible in closed form when D = 2. Here
we shall content ourselves with deriving an asymptotic expression for ε0 in the limit F → 0.
With this aim let us assume that |ε0| is large and close to the negative real half-axis. In this
case—see equation (31)—|q| is large and |arg(q)| ≈ π for all k ∈ [0,∞), hence the following
approximation is uniformly valid in the range of integration in equation (35) [18]:

Ai(q) Ci(+)(q) ∼ F 1/3

2π
√

k2 − E

{
1 +

i

2
exp

[
−4

3
F−1(k2 − E)3/2

]}
. (42)

Inserting this into equation (35) we obtain, in D = 2,

g2(λR, µ,E) ∼ 1

λR

− 1

4π
ln

(
−µ2

E

)
− i

4π
I2(E) (43)

where

I2(E) :=
∫ ∞

0

dk√
k2 − E

exp

[
−4

3
F−1(k2 − E)3/2

]
. (44)

Consistently with our assumptions on E and F we can compute I2(E) using the saddle-point
approximation and obtain

I2(E) ∼
∫ ∞

0

dk√−E
exp

{
−4

3
F−1

[
(−E)3/2 +

3

2
(−E)1/2k2

]}

=
√

πF

8
(−E)−3/4 exp

[
−4

3
F−1(−E)3/2

]
. (45)

In the limit F → 0, the integral I2(E) vanishes and g2(λR, µ,E) has a single real and
negative zero EB , corresponding to the energy of the bound state in the absence of the external
field:

EB = −µ2 exp

[
− 4π

λR(µ)

]
. (46)

We note that in D = 2 a bound state exists—provided, of course, F = 0—even if the
renormalized strength of the point-like potential is negative, in which case one could naively
expect the potential to be repulsive.

As the bound state energy must be independent of the arbitrary scale µ, one can readily
obtain the flow equation for the renormalized running coupling parameter, that now reads

λR(µ) = λR(µ0)

1 + [λR(µ0)/2π ] ln(µ/µ0)
(47)

leading again to asymptotic freedom.
Now, let us consider equation (43) in the case of a weak field F. Using equation (46), we

can rewrite it as

g2(EB,E) ∼ 1

4π

[
ln

(
E

EB

)
− iI2(E)

]
. (48)
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An approximate solution to the equation g2(EB,E) = 0 is given by E0 = EB [1 + iI2(EB)];
in terms of the dimensionless variable ε = EF−2/3 we obtain (cf equation (45)),

ε0 ∼ εB

{
1 + i

√
π

8
(−εB)−3/4 exp

[
−4

3
(−εB)3/2

]}
εB → −∞. (49)

Moreover, as in the one- and three-dimensional cases, it is possible to show that an
infinite number of resonances arise as solutions to the equation g2(λR, µ,E) = 0, approaching
asymptotically the half-lines arg(E) = 0 and arg(E) = −2π/3 when |E| → ∞.

4. Conclusions

In this paper, we have analysed the ionization of a very simple (though non-trivial) model atom
subjected to the influence of a uniform static field. The model we have considered here is that
of a one-electron atom in which the Coulomb interaction between the electron and the nucleus
is replaced by an attractive short-range (in fact, point-like) interaction. We have analysed the
problem in D = 1, 2 and 3 spatial dimensions. In spite of its simplicity and the fact that—due
to the external field—the Hamiltonian is not bounded from below, the study of the present
model is far from being academic as it allows us to grasp the basic features of the quantum
dynamical behaviour of many realistic physical systems. In particular, its main prediction is
a sensible deviation, in the strong field regime, from the naively expected exponential decay
law of the survival probability of the bound state after the external field is turned on. Actually,
more or less important deviations from the exponential decay law do occur even when the
field is weak, specially in its short time behaviour, with the presence of oscillatory transient
effects (which are more pronounced in D = 1). Such deviations are caused by the presence
of a purely continuous spectrum and the appearance of an infinite number of resonances once
the uniform field is switched on. Deviations from the exponential decay law are also expected
for very large times; this, however, may be an artefact of the model studied here, since for
more realistic potentials one can prove asymptotic exponential decay [8]. (On the other hand,
as noted before, the survival probability would be so small when such deviations took place
that they would be practically unobservable.)

An important development of the present investigation, which will be presented elsewhere,
is the generalization of our analysis to the additional presence of a uniform magnetic field.
In this way, it might eventually be possible to precisely evaluate the lifetimes of the so
called non-conducting states—within the integer quantum Hall effect (IQHE) conventional
terminology—and to explicitly verify the widely popular picture according to which the
presence of impurities, described in the simplest way by point-like attractive wells, gives rise
to the plateaux formation in the IQHE [23].
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Appendix A

In this appendix we shall sketch the proof of the bound (16) on G+(E; x, x) in D = 1.
Let us first examine the asymptotic behaviour of G+(E; x, x ′) for |E| → ∞ in the sector
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−π < arg(E) < −2π/3. Since arg(ρ) → arg(E) as |E| → ∞ (cf equation (7)) we have
|arg(−ρ)| = |arg(eiπρ)| < π/3 for |E| large enough, so that [18]

Ai(−ρ) ∼ 1
2π−1/2(−ρ)−1/4 exp

[− 2
3 (−ρ)3/2

]
(A.1)

Ci(+)(−ρ) ∼ π−1/2(−ρ)−1/4
{
exp

[
2
3 (−ρ)3/2

]
+ 1

2 i exp
[− 2

3 (−ρ)3/2
]}

. (A.2)

Inserting equations (A.1) and (A.2) into equation (11), and dropping the second term in curly
brackets in equation (A.2) since it is negligible compared to the first one, we obtain

G+
0(E; x, x ′) ∼ 1

2 iF−1/3(ρ−ρ+)
−1/4 exp

[
2
3 i

(
ρ

3/2
− − ρ

3/2
+

)]
. (A.3)

In addition, taking equation (7) into account, we have

ρ3/2 ∼ F−1E3/2 + 3
2E1/2x |E| → ∞ (A.4)

so that

G+
0(E; x, x ′) ∼ 1

2 iE−1/2 exp (−iE1/2|x − x ′|). (A.5)

Inserting this expression into equation (13) and using the fact that Im(E1/2) < 0, one can
easily show that there is a positive constant C such that |G+(E; x, x ′)| < C|E|−1/2 for |E|
sufficiently large and −π < arg(E) < −2π/3. Note that equation (16) is a trivial consequence
of this inequality.

Let us now examine the asymptotic behaviour of G+(E; x, x ′) in the sector −2π/3 <

arg(E) < 0. For this purpose it is convenient to rewrite equation (13) as

G+(E; x, x ′) = G+
0(E; x, x ′) + λR(E; x, x ′)

1 + λG+
0(E; 0, 0)

(A.6)

where

R(E; x, x ′) := G+
0(E; 0, 0)G+

0(E; x, x ′) − G+
0(E; x, 0)G+

0(E; 0, x ′). (A.7)

Again, since arg(ρ) → arg(E) as |E| → ∞, we have |arg(ρ)| < 2π/3 for |E| large enough,
in which case we have [18]

Ai(−ρ) ∼ π−1/2ρ−1/4 sin
(

2
3ρ3/2 + 1

4π
)

(A.8)

Ci(+)(−ρ) ∼ π−1/2ρ−1/4 exp
[
i
(

2
3ρ3/2 + 1

4π
)]

(A.9)

so that

G+
0(E; x, x ′) ∼ 1

2 iF−1/3(ρ−ρ+)
−1/4

{
i exp

[
2
3 i

(
ρ

3/2
+ + ρ

3/2
−

)]
− exp

[
2
3 i

(
ρ

3/2
+ − ρ

3/2
−

)]}
.

(A.10)

Using (A.4) and neglecting the second term in curly brackets we obtain

G+
0(E; x, x ′) ∼ − 1

2E−1/2 exp
{
i
[

4
3E3/2F−1 + E1/2(x + x ′)

]}
. (A.11)
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The asymptotic behaviour of R(E; x, x ′) depends upon the signs of x and x ′. Let us first
consider the case x, x ′ � 0. If we insert equation (11) into equation (A.7), and use the identity
f (ρ)f (ρ ′) = f (ρ−)f (ρ+), we obtain (ε := EF−2/3)

R(E; x, x ′) = π2F−2/3Ai(−ρ−) Ci(+)(−ε)[Ai(−ε) Ci(+)(−ρ+) − Ai(−ρ+) Ci(+)(−ε)].

(A.12)

Furthemore, inserting equations (A.8) and (A.9) into equation (A.12) and using equation (A.4)
we obtain

R(E; x, x ′) ∼ − 1

2E
exp

[
i

(
4

3
E3/2F−1 + E1/2x−

)]
sin(E1/2x+) x, x ′ � 0 (A.13)

where subdominant terms have been dropped. A similar analysis shows that

R(E; x, x ′) ∼ 1

2E
exp

[
i

(
4

3
E3/2F−1 + E1/2x+

)]
sin(E1/2x−) x, x ′ � 0 (A.14)

and that R(E; x, x ′) ≡ 0 for x � 0 � x ′ or x ′ � 0 � x. Replacing G+
0(E; x, x ′) and

R(E; x, x ′) in equation (A.6) with their asymptotic expressions, and using the inequalities
|sin z| � exp(|Im z|), |Im E1/2| � |E|1/2 and |x ± x ′| � |x| + |x ′|, one can easily derive the
bound of equation (16).

Appendix B

In this appendix we derive the asymptotic expression of ε0 in the weak field limit. Let us
first consider the one-dimensional case. If we assume that |ε|  1 and arg(ε) ≈ −π , then
we may use the asymptotic expressions (A.1) and (A.2) for the Airy functions Ai and Ci(+).
Equation (22) then becomes

(−ε)−1/2
{
1 + 1

2 i exp
[− 4

3 (−ε)3/2
]} ≈ (−εB)−1/2. (B.1)

This equation can be solved iteratively. As a first approximation, one may neglect the second
term in square brackets, thus obtaining ε0 ≈ εB . In order to obtain the imaginary part of ε0

one must iterate once more: replacing ε in the exponential with εB and solving the resulting
equation, one finds

ε0 ∼ εB

{
1 + i exp

[− 4
3 (−εB)3/2

]}
εB → −∞ D = 1. (B.2)

One can derive a systematic expansion in powers of εB if one includes more and more terms
in the asymptotic expansion of the Airy functions. In particular, the real part of the resulting
expansion for E0 = F 2/3ε0 agrees with the Rayleigh–Schrödinger perturbation series for the
bound state energy when the external field is treated as a perturbation [14, 16].

Following the same strategy, we can approximate equation (40) of the three-dimensional
case by

(−εB)1/2 − (−ε)1/2 − i

8ε
exp

[
−4

3
(−ε)3/2

]
= 0. (B.3)

We can obtain an approximate solution to this equation using the iterative method employed
above. This way, we finally arrive at the result displayed in equation (41). The result for the
two-dimensional case is worked out in subsection 3.4 and is given in equation (49).
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Appendix C

In this appendix we derive the asymptotic behaviour of ε1 in the weak field limit, εB → −∞.
As discussed in subsection 2.3, in that limit the rhs of equation (22) vanishes so that, to the
lowest order, one has ε1 ≈ −a1, where a1 = −2.338 10 . . . is the smallest (in absolute value)
zero of Ai(z). In order to obtain a more refined approximation, valid for a finite though large
value of |εB |, we expand the lhs of equation (22) in powers of x = ε + a1 and, assuming that
|x| � 1, we truncate the series and solve the resulting polynomial equation in x. The first
non-trivial correction to the imaginary part of ε1 is obtained when one truncates the series at
O(x3). In doing so, equation (22) is then approximated by a quadratic equation in x,

ax2 + bx + c = 0 (C.1)

where a = Ai′(a1) Ci(+)′(a1), b = −Ai′(a1)Bi(a1), and c = −(1/2π)(−εB)−1/2 � 1. Of the
two solutions to equation (C.1), x± = (−b ± √

b2 − 4ac
)/

2a, the one with the minus sign
must be discarded, as it violates the condition that x → 0 as εB → −∞ (c → 0). Expanding
x+ in powers of c, we obtain

x+ = − c

b
− ac2

b3
+ O(c3). (C.2)

Substituting a, b and c with their explicit expressions, we finally obtain

ε1 = −a1 +
1

Ai′(a1)Bi(a1)

(−εB)−1/2

2π

+
Ci(+)′(a1)

Ai′(a1)2Bi(a1)3

(−εB)−1

4π2
+ O

[
(−εB)−3/2

]
εB → −∞. (C.3)

An important consequence of this result is that Im(ε1) ∼ (−εB)−1 for εB → −∞.
One could be tempted to apply the reasoning above to any εn, n ∈ N. However, there is an

important caveat: the rhs of equation (C.2) is a good approximation to x+ only if |ac/b2| � 1,
or ∣∣∣ a

b2

∣∣∣ =
∣∣∣∣∣ Ci(+)′(an)

Ai′(an)Bi(an)2

∣∣∣∣∣ � |c| = 2π(−εB)1/2. (C.4)

Using the asymptotic expressions of the Airy functions and of an—the nth zero of Ai(z) [18]—
one can show that |a/b2| ∼ π(−an)

1/2. Hence, equation (C.3) is also valid for εn, n > 1 (with
the obvious substitution a1 → an), provided |an| � |εB |. (See appendix D for the asymptotic
behaviour of εn when |an|  |εB |.)

Appendix D

In this appendix we derive the asymptotic behaviour of the resonances εn, n �= 0, which are
located very far from the origin in the complex ε-plane. Let us first discuss the one-dimensional
case. Assuming that |ε|  1 and θ := arg(ε) ≈ 0, we are allowed to use the asymptotic
expressions (A.8) and (A.9) with the aim of approximating equation (22) by

ε−1/2
[
exp

(
4
3 iε3/2

)
+ i

] ≈ (−εB)−1/2. (D.1)

If we further assume that |ε|  |εB |, we may neglect the second term in square brackets; the
resulting complex equation is then equivalent to the following pair of real equations:

4

3
|ε|3/2 sin

3θ

2
≈ −1

2
ln

∣∣∣∣ ε

εB

∣∣∣∣ 4

3
|ε|3/2 cos

3θ

2
≈ θ

2
+ 2nπ n ∈ N. (D.2)
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Assuming n  1 and |ε| large, one can easily solve these equations, obtaining

θ ∼ −1

4
|ε|−3/2 ln

∣∣∣∣ ε

εB

∣∣∣∣ |ε| ∼ sn :=
(

3nπ

2

)2/3

. (D.3)

Since |θ | � 1, we can write ε = |ε| eiθ ≈ |ε|(1 + iθ), so that

εn ∼ sn − i

4
s−1/2
n ln

∣∣∣∣ sn

εB

∣∣∣∣ n  1 D = 1. (D.4)

Next we consider the case |ε|  1 and θ := arg(ε) ≈ −2π/3. Using the very same
approximations we readily come to the following estimate

ε−n ∼ e−2iπ/3

{
sn +

i

4
s−1/2
n ln

∣∣∣∣ sn

εB

∣∣∣∣
}

n  1 D = 1. (D.5)

A straightforward generalization of the above treatments to the basic resonance equation (40)
in the three-dimensional case eventually leads to the following asymptotic expressions:

εn ∼ sn − 1
2 is−1/2

n ln
(
4s3/2

n

)
ε−n ∼ e−2iπ/3ε∗

n n  1 D = 3. (D.6)
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